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In applied fields, practitioners hoping to apply causal structure learning or causal orientation algorithms
face an important question: which independence test is appropriate for my data? In the case of real-valued
iid data, linear dependencies, and Gaussian error terms, partial correlation is sufficient. But once any of
these assumptions is modified, the situation becomes more complex. Kernel-based tests of independence
have gained popularity to deal with non-linear dependencies in recent years, but testing for conditional
independence remains a challenging problem.

We highlight the important issue of non-iid observations: when data are observed in space, time, or on
a network, “nearby” observations are likely to be similar. This fact biases estimates of dependence between
variables. Inspired by the success of Gaussian Process regression for handling non-iid observations in a wide
variety of areas, and by the usefulness of the Hilbert-Schmidt Independence Criterion (HSIC), a kernel-
based independence test, we propose a simple framework to address all of these issues: first, use Gaussian
Process regression to control for certain variables and to obtain residuals. Second, use HSIC to test for
independence. We illustrate this on two classic datasets, one spatial, the other temporal, that are usually
treated as iid. We show how properly accounting for spatial and temporal variation can lead to more reason-
able causal graphs. We also show how highly structured data, like images and text, can be used in a causal
inference framework, using a novel structured input/output Gaussian Process formulation. We demonstrate
this idea on a dataset of translated sentences, trying to predict the source language.
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1. INTRODUCTION
It is common for observational data to violate the typical assumption of independent
and identically distributed (iid) observations. For instance, data about user behavior
usually has a temporal structure. Environmental measurements often have both tem-
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poral and spatial structure. This structure poses a particular problem when inferring
dependence between random variables. As a motivating example, consider two inde-
pendently generated autoregressive time series AR(1) on random variables X and Y
according to the model

xt = 0.9 · xt−1 + εx,t and yt = 0.8 · yt−1 + εy,t where εx,t, εy,t ∼ N (0, 1).

That is, X and Y are independent time series, each of which is corrupted at each step
by adding normally distributed iid random variables. Despite the fact that X and Y
are independent, the Pearson correlation between X and Y may be large in magni-
tude, due to the underlying autocorrelation structure of each time series, as shown in
Figure 1. While Fisher’s z-transformation can be used to derive the distribution of the
Pearson correlation statistic under linear independence, this assumes iid observations.
But in the case of X and Y , our observations are neither independent nor identically
distributed. The general guidance in the time series literature is to fit an appropriate
autoregressive model to the data and to obtain residuals from this model [Box et al.
2008]. The intuition is that this pre-whitening should yield residuals which are iid,
after which independence testing proceeds as usual. We formalize this notion in the
present paper.

Fig. 1. Pairs of time series processes were generated 10,000 times, with n = 100 observations for each.
Each time, the Pearson correlation between the two processes was calculated. When both pairs were white
noise, i.e. iid ∼ N (0, 1), 95% of the correlations were between -0.2 and 0.2. But when the two pairs were
independently generated AR(1) processes, with xt = 0.9xt−1 + εx,t and yt = 0.8yt−1 + εy,t, only 60% of
the correlations were between -0.2 and 0.2. This is an example of the way that temporal autocorrelation can
bias an independence test (in this case, linear independence tested with Pearson correlation) that assumes
iid data: many more correlations are significant than we would expect by chance. A simple correction is to
first pre-whiten xt and yt by fitting an AR(1) model and obtaining residuals.

Many algorithmic approaches to causal inference rely on statistical tests of indepen-
dence between variables. The most popular default methods are the Fisher z-score,
Pearson correlation (and partial correlation) [Pearson 1983], and more recently the
Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al. 2008]. More generally,

ACM Transactions on Intelligent Systems and Technology, Vol. 99, No. 999, Article 9999, Publication date: January 2100.



Gaussian Processes for Independence Tests with non-iid Data in Causal Inference 9999:3

the entire framework of graphical models for causal inference [Pearl 2009] relies cru-
cially on assumptions about d-separation in graphs, and testing these assumptions
with observational data requires applying a valid conditional independence test.

As in the case described above, each of these tests is prone to spuriously reporting
large correlations when used on non-iid data, due to the underlying autocorrelation
structure. Furthermore, causal inference tools such as the PC algorithm [Spirtes et al.
2001] rely on conditional independence tests, asking whether X ⊥⊥ Y |Z. It is not clear
a priori what effect non-iid data will have in this case. If the true model is that X ⊥⊥
Y |Z, underlying autocorrelation affecting both X and Y might lead us to believe that
X 6⊥⊥Y |Z.

Example 1.1. Consider the graphical model below: It illustrates the problem of con-
founding due to non-iid data. T represents time. Shaded nodes X, Y , and Z are ob-
served, and T may be either observed or unobserved.

Z T

X Y

The true causal relationship is that X ⊥⊥ Y |Z. However, if T is unobserved, it acts as
a latent confounding variable, meaning that a spurious edge may be inferred between
X and Y, i.e. a conditional independence test rejects the hypothesis X ⊥⊥ Y |Z. Once T
is observed and controlled for, a conditional independence test will correctly conclude
that X ⊥⊥ Y |Z.

We are not the first to point out that every scientific observation was generated at
some specific point in time [Cressie and Wikle 2011]. But in most cases, this informa-
tion is discarded for convenience. In Section 5, we consider a spatial and a temporal
dataset which are usually analyzed as if the data were iid. We perform tests (Moran’s
I for spatial data and partial autocorrelation for time series data [Moran 1950]) which
conclusively reject the hypothesis that the observations are iid, and show how causal
inference algorithms yield more reasonable results after controlling for the underly-
ing spatial and temporal autocorrelation. Our framework also opens up the possibility
of causal inference with structured data, and we develop a novel approach to Gaus-
sian Process regression and independence testing which we apply to textual data to
determine which language is a translation of another for pairs of texts.

We propose a simple framework for using Gaussian Process regression to reduce
questions about conditional independence with non-iid data to questions about uncon-
ditional independence with iid data, which can be answered with HSIC. Mechanically,
our approach is similar to that taken in recent papers on bivariate causal orientation
[Peters et al. 2013], in which it is termed Regression with Subsequent Independence
Test (RESIT), but the motivation is different. The most similar approach to ours is
the conditional independence tests proposed by [Moneta et al. 2011], which are specif-
ically designed for time series data modeled by a vector autoregression (VAR) model,
and thus not directly applicable to, e.g. spatial data. Insofar as our method combines
kernel-based independence tests with the PC algorithm, it is similar to the Kernel PC
algorithm proposed by [Tillman et al. 2009], but our conditional independence tests
are different. The strategy we propose is straightforward, generally applicable wher-
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ever Gaussian Processes can be used, and it works for both pre-whitening non-iid data
and for testing conditional independence.

2. CONTRIBUTIONS
2.1. Approach
The centerpiece of the approach is to use regression to remove dependence: on space,
time, or a set of conditioning variables. We assume that we have random variables
(X,Y, Z), observed at locations S (in time, space, or on a network). Conditional inde-
pendence testing then proceeds in the following three steps:

(1) We first use separate Gaussian Process (GP) regressions of X|S, Y |S and Z|S to
obtain residuals

rx = x− Ê[x|s] and ry = y − Ê[y|s] and rz = z − Ê[z|s], (1)

thus pre-whitening each variable and eliminating its dependence on S.
(2) Next, we again use GP regression to obtain residuals

εxz = rx − Ê[rx|rz] and εyz = ry − Ê[ry|rz] (2)

from regressing both rx and ry on rz separately.
(3) Finally, we use HSIC to test for independence:

εxz ⊥⊥ εyz. (3)

At a mechanical level, in each step we use Gaussian Process regression to obtain resid-
uals for which we have controlled for variation—in the case of the dependence struc-
ture of the data, we are controlling for, say, temporal variation. In the case of condi-
tional independence, we are controlling for the variation due to variable Z.

Strategies like the above are standard practice in statistical modeling. In econo-
metrics, this approach is justified by the Frisch-Waugh-Lovell theorem [Frisch and
Waugh 1933] (which was originally stated in a time series context), which proves that
in the case of linear regression, partial correlations can be calculated by finding the
correlations between residuals. In the spatial statistics and time series literature, pre-
whitening by fitting models and obtaining residuals, removing trends, and taking first
differences are all standard approaches [Box et al. 2008]. However, to our knowledge, a
full formulation of this strategy, combining a non-parametric regression and indepen-
dence test, has not been stated explicitly before. Moreover, beyond the case of linear
models with Gaussian noise, the conditions under which it holds are not known. In
Section 4.1, we state precise conditions under which our test is valid.

We believe that our method can serve as a default template when testing for con-
ditional independence with non-iid data. It is equally useful as a simple method for
testing for conditional independence even when observations are iid, in which case
the pre-whitening step can be skipped. We highlight a few reasons for relying on GP
regression for pre-whitening and conditioning, rather than using parametric tests or
relying solely on kernel-based tests:

(1) Gaussian Processes provide a principled Bayesian approach. Yet, for regression
their convenient analytic form means that hyperparameters can be learned much
more efficiently than in many other fully Bayesian models since we can integrate
out additive noise. This provides considerable computational savings and increased
numerical accuracy.

(2) A variety of packages already exist to fit Gaussian Process regression [Rasmussen
and Nickisch 2010; Kalaitzis et al. 2013; Vanhatalo et al. 2013; Karatzoglou et al.
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2004], which perform inference using either optimization methods, grid search, or
sampling (MCMC) strategies.1

(3) In the case of time series and especially spatial data, the Gaussian Process frame-
work is a long-standing, proven method, typically referred to as “kriging” in geo-
statistics [Salkauskas 1982]. In applied fields where it has been used, practitioners
are adept at designing appropriate covariance functions (Mercer kernels) adapted
to their problem domains. For instance, the Matérn kernel is a popular choice.
With spatiotemporal data, much recent work has focused on designing classes of
sophisticated non-separable and non-stationary covariance functions for captur-
ing complex dependencies [Gneiting et al. 2007]. These covariance functions could
be directly imported into the kernel-based statistical tests, but their use requires
model-checking and diagnostics. Recent work suggests that complicated time se-
ries dynamics can be automatically fit through combinations of covariances [Wilson
and Adams 2013; Duvenaud et al. 2013].

(4) By design, Gaussian Processes allow for easy graphical model-checking: diagnostic
plots can be inspected to check for autocorrelation and overfitting.

(5) Our new GP formulation for structured inputs and outputs, as introduced in Sec-
tion 4.4, opens up the possibility of conditional independence and causal inference
with structured data such as text, images, and anything else on which a Mercer
kernel can be defined.

(6) In the case of real-valued data, our formulation allows for testing conditional inde-
pendence without first discretizing the conditioning set. This is useful because dis-
cretization is fraught with information loss—we may lose the relevant time scale
or we might even introduce dependence due to the quantization level inherent in
binning.

2.2. Related Work
We are only aware of one general test [Zhang et al. 2008] for unconditional indepen-
dence with non-iid data. It requires precisely specifying the dependence structure of
the data as a graphical model, and then decomposing this model into cliques, exploit-
ing the connection between the exponential family of distributions and kernels over
graphical models. The analysis is by no means simple—for instance, it has not been
extended to a lattice structure; this is unfortunate because assuming that points are
on a lattice is a basic starting point in the spatial statistics literature.

In the case of conditional independence, several tests have been proposed, including
a test based on characteristic functions [Su and White 2007], the Normalized Con-
ditional Cross-Covariance Operator (NOCCO) [Fukumizu et al. 2007], Kernel-based
Conditional Independence (KCI) [Zhang et al. 2011], a scale invariant measure [Reddi
and Póczos 2013], a scalable method called conditional correlation independence (CCI)
[Ramsey 2014], and a permutation-based conditional independence test [Doran et al.
2014]. However, these tests will all be biased for non-iid data, just like the uncondi-
tional tests. While CCI does not address the non-iid case, for conditional independence
it takes an approach with a similar flavor to our method, and makes similar asymp-
totic claims. However, CCI is based on a finite basis expansion, so consistency only
holds in the limit as the number of basis functions goes to infinity along with the num-
ber of samples, whereas we use a consistent non-parametric regression method, so
consistency holds in the large-sample limit.

A few works focus specifically on the time series domain, but it is not clear if they
can be generalized to spatial or continuous / partially observed time series data. [Mon-
eta et al. 2011] proposed a conditional independence test, appropriate for time series

1See also http://www.gaussianprocess.org/#code for more details.
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data that can be modeled as a vector autoregressive (VAR) process, based on calcu-
lating divergence between density estimates using smoothing kernels. [Besserve et al.
2013] proposed a powerful kernel cross-spectral density operator for characterizing in-
dependence between time series and [Chwialkowski and Gretton 2014] explored the
behavior of HSIC for random processes (e.g., time series data), showing a new consis-
tent estimate of the p-value for non-iid data, but neither of these works address the
conditional independence case.

Even with iid data, these tests have not found widespread application. Closed form
distributions under the null are not available, except in the cases of KCI and the test
in [Su and White 2007], so permutation testing is required. Valid permutation testing
of X ⊥⊥ Y |Z must preserve the marginal structure X ⊥⊥ Z and Y ⊥⊥ Z. Assuming
that Z is categorical, for each value of Z one can consider permuting X. But when Z
is real-valued, discretization is necessary first. Clustering is a common approach, as
in [Tillman et al. 2009]. By contrast, our regression-based approach naturally handles
categorical, real-valued, and even structured (image or text) data.

3. BACKGROUND
3.1. Gaussian Processes
A Gaussian process (GP) is a stochastic process over an index set X . It is entirely
defined by a mean function µ : X → R and a covariance function k : X ×X → R. These
two functions are chosen such as to jointly define a normal distribution whenever we
draw f |X from a GP(µ, k) on a finite set of locations X := {x1, . . . xn}. More specifically,
we have

f |X ∼ N (µ(X), k(X,X)) where µ(X)i = µ(xi) and [K(X,X)]ij = k(xi, xj). (4)

By its very construction this means that µ(X) is an m dimensional vector, and
k(X,X) ∈ Rd×d is a positive semidefinite matrix. In other words, k generates sym-
metric matrices with nonnegative eigenvalues.

Note that this does not introduce a function over X. In fact, while there are some
kernels leading to smooth processes [Wahba 1990], this is in general not the case. In
particular, quite often the realization f(x) is nonsmooth while its prior is smooth. A
well-known example is the Brownian Bridge.

Note that there is a subtle difference bewtween functions and function values in the
construction of a GP. For any infinite-dimensional GP, i.e. where the rank of k(X,X) is
unbounded, it is only possible to evaluate the GP pointwise. The technical challenge is
that distributions over infinite-dimensional objects are nontrivial to define. Evaluating
a GP on a finite number of locations sidesteps the entire problem.

As an illustration consider a Gaussian Process with mean function µ = 0 and Gaus-
sian Radial Basis Function (RBF) kernel k(xi, xj) = e−‖xi−xj‖2 . These parameters give
a GP from which we can draw a realization. Since we want to know its value for a
range of locations, we draw f for a grid of points. By construction they are drawn from
a multivariate Gaussian distribution with mean µ = 0 and covariance K.

Three different draws are shown in Figure 2. In a Bayesian framework, these should
be thought of as draws from the prior distribution over joint values f(x), before seeing
any data. How do we update our prior given observations Z = (X,Y )? We start by
specifying the joint distribution over both observed outputs Y and unobserved outputs
Y ∗:

[ Y Y ∗ ] ∼ N (µ(~x),K)
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Fig. 2. Three draws from a GP prior with mean 0 and Gaussian RBF covariance function.

where we can calculate K(xi, xj) for any pair of x’s, observed or unobserved, i.e. :

K =

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]
Since we’ve observed (X,Y ), we can find the conditional distribution using the prop-

erties of multivariate Gaussian distributions, see e.g. [Williams and Rasmussen 2006]:

Y ∗|Y ∼ N (K(X∗, X)K(X,X)−1Y,K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗))

We give an illustration in Figure 3, where the observations (−1, 1), (0, 0), (1, 1) are
shown in black circles and 10 posterior function draws f∗ are plotted. Notice that there
is no uncertainty at the observed points.

In some cases, like modeling computer simulations, this noise-free behavior might
be desirable, but for real data generated by nature we need to include an extra noise
term. If we believe our noise is iid, we can use the following covariance function:

k(xi, xj) = e−‖xi−xj‖2 + σ2δi,j

What does this extra variance σ2 (called the “nugget” in geostatistics) do? It only ap-
pears when i = j, meaning that the diagonal of the covariance matrix has entries 1+σ2

instead of 1. If we use the same K as before, we have:

Y ∗|Y ∼ N (µ̄, K̄) (5)
where µ̄ = K(X∗, X)(K(X,X) + σ2I)−1Y

K̄ = K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2I)−1K(X,X∗)

Here K̄ is the well-known Schur complement of the joint covariance matrix over X and
X ′. Note that the noise term σ2 is only used for observed data Y . If we use this prior,
we can draw 10 posterior functions as before. In Figure 3 (right) we have plotted these
function draws. Notice that there is now some uncertainty, controlled by the parame-
ter σ2, at the observed points — even if we were to observe y|x at the same location
repeatedly, we would have no assurance that the observations would be identical.
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Fig. 3. Draws from a Gaussian Process posterior with Gaussian RBF kernel after observations at
{(−1, 1), (0, 0), (1, 1)}. Left: noise free observations. Right: noisy observations with σ2 = 0.2. Notice the
difference in terms of uncertainty at the locations of measurement and the relative similarity otherwise.

3.2. Hilbert-Schmidt Independence Criterion
Given observations from a joint distribution P (X,Y ), the Hilbert-Schmidt Indepen-
dence Criterion [Gretton et al. 2005; Gretton et al. 2008] is a statistical test for the
null hypothesis of independence: X ⊥⊥ Y . It uses kernel embeddings of probability
distributions to compare the joint distribution P (X,Y ) to the product of the marginal
distributions P (X)P (Y ). After specifying kernels k(x, x′) with Hilbert space HX and
`(y, y′) with Hilbert space HY HSIC maximizes a kernelized covariance, or equiva-
lently the distance between the mean embedding of the joint distribution in Hilbert
space and the product of the mean embeddings of the marginal distributions [Smola
et al. 2007]:

sup
‖f‖,‖g‖≤1

Ex,y[f(X)g(Y )]−Ex[f(X)]Ey[g(Y )]

For general f, g, this expression is 0 if and only if P (X,Y ) = P (X)P (Y ), which is
equivalent to X ⊥⊥ Y .

The test statistic that maximizes this expression if f ∈ HX and g ∈ HY is given by

HSIC = ‖Ex,y [k(x, ·)`(y, ·)]−Ex [k(x, ·)Ey`(y, ·)]‖2

For so-called characteristic kernels [Sriperumbudur et al. 2010], such as the RBF ker-
nel, this statistic is 0 if and only if P (X,Y ) = P (X)P (Y ). An estimator can be derived:

ĤSIC =
1

n2

∑
i,j

k(xi, xj)`(yi, yj)−
2

n3

∑
i,j,q

k(xi, xj), `(yi, yq) +
1

n4

∑
i,j,q,r

k(xi, xj)`(yq, yr)

This estimator can be written compactly in terms of Gram matrices K and L:

ĤSIC =
1

n2
tr(KHLH)

where Kij = k(xi, xj), Lij = `(yi, yj), and H = I − 1
n11T is a centering matrix. More

details are in [Gretton et al. 2012].

ACM Transactions on Intelligent Systems and Technology, Vol. 99, No. 999, Article 9999, Publication date: January 2100.



Gaussian Processes for Independence Tests with non-iid Data in Causal Inference 9999:9

The distribution of HSIC under the null can be obtained by randomization testing:
given pairs (xi, yi) we shuffle the y’s and recompute ĤSIC. [Gretton et al. 2008] gives
an asymptotic result based on the Gamma distribution, and [Zhang et al. 2011] gives
a test based on the eigenvalues of the kernel matrices.

HSIC has been used to test for independence between structured data. In [Gretton
et al. 2008], a string kernel was used to test for independence between French and En-
glish sentences. Inspired by this approach, we develop a novel input/output Gaussian
Process regression method in Section 4.4, testing for independence with HSIC using
residuals in feature space.

3.3. Causal Inference Methods
We focus on two classes of causal inference methods: constraint-based causal structure
learning algorithms exemplified by the PC algorithm and bivariate causal orientation
methods, i.e. the additive non-Gaussian (ANG) framework [Hoyer et al. 2008] and the
Continuous Additive Noise Model (CANM) framework [Peters et al. 2013].

The PC algorithm learns an equivalence class of partially directed acyclic graphs
(PDAGs) which are consistent with the conditional independencies entailed by the
data, as tested with statistical tests for conditional independence. After learning this
“skeleton,” the algorithm finds V-structures, also known as colliders, of the form A →
B ← C which are consistent with the learned conditional independencies and orients
edges accordingly. For example, a V structure A→ B ← C would be implied by A ⊥⊥ C
and A 6⊥⊥ C|B. Finally, the algorithm orients any other edges it can to be consistent
with the edges it has already oriented, so long as these orientations do not introduce
any new V structures or cycles. Once a PDAG is learned, independence relations can
be read off the graph using the rules of d-separation. For a detailed discussion of the
PC algorithm see [Spirtes et al. 2001] and for causal DAGs and d-separation see [Pearl
2009].

The bivariate causal orientation methods compare two models, a forward model:
Y = f1(X) + ε1 and a backwards model: X = f2(Y ) + ε2. After fitting non-parametric
regressions to obtain residuals ε̂1 and ε̂2, an independence test such as HSIC is used
to test whether ε̂1 ⊥⊥ X and ε̂2 ⊥⊥ Y . If, for example, ε̂1 ⊥⊥ X but ε̂2 6⊥⊥ Y we reject the
backward model and retain the forward model, X → Y . For a detailed discussion see
[Peters et al. 2013].

4. THEORETICAL DEVELOPMENT
4.1. Testing Conditional Independence by Regression and Unconditional Independence
We start by assuming both faithfulness and the Markov condition, the same assump-
tions made for the PC algorithm:

Faithfulness. There exists a causal DAG G and a probability distribution over ran-
dom variables X,Y, Z such that if X ⊥⊥ Y |Z then X and Y are d-separated by Z in
graph G
Markov. If X and Y are d-separated by Z in G, then X ⊥⊥ Y |Z.

Second, we assume that we have access to a conditional regression estimator to remove
the dependence on Z from X and Y . More specifically, we assume that this can be done
in an additive fashion:

Consistent Regressors. We assume that we have consistent non-parametric regres-
sors m̂x(Z) and m̂y(Z) that converge to E[X|Z] and E[Y |Z] respectively, such as
Gaussian Process regression.
Additive Noise Model. If Z is the cause of X or Y , we assume an additive indepen-
dent noise model. That is, if Z causes X (respectively Y ) then X = f(Z) + ε where
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Z Z Z

A X Y B X Y B X ε Y B

Case 1. V-structure Case 2. No edge between X and Z Case 3. Z is a cause of X

Fig. 4. Three cases of dependence between (X,Y, Z), corresponding to the cases in the proof of Theorem 4.1
that X ⊥⊥ Y |Z if and only if X − E[X|Z] ⊥⊥ Y − E[Y |Z]. We define auxiliary variables A := X − E[X|Z]
and B := Y − E[Y |Z] which are uniquely determined by their parents. Case 1: we have a V-structure
X → Z ← Y , so we see that X 6⊥⊥Y |Z ⇒ X −E[X|Z]6⊥⊥Y −E[Y |Z] because A and B are d-connected. Case
2: If there is no edge between X and Z, any path from X to B must go through Y . Case 3: Z and ε cause X,
so the only possible path from ε to B is through Y.

Z ⊥⊥ ε. Notice that we are not assuming in this case that Y ⊥⊥ ε, or that the noise is
always additive. For example, if the true structure is X ← Z ← Y then we assume
X = f(Z) + ε but we do not assume Y = g(Z) + ε2 or Z = g(Y ) + ε2.

Finally, we assume that we have a valid method for testing unconditional indepen-
dence between random variables, such as HSIC. Given these assumptions, our method
can be summarized in the following simple algorithm:

(1) Obtain residuals εxz = X − m̂x(Z) and εyz = Y − m̂y(Z)
(2) Test whether εxz ⊥⊥ εyz.

We claim that εxz ⊥⊥ εyz ⇐⇒ X ⊥⊥ Y |Z.
We remark upon the assumptions underlying our method. As explained below, [Choi

and Schervish 2007] demonstrate almost sure convergence for GP regression under
mild conditions. Additive noise models underlie many standard regression techniques
such as linear regression, kernel ridge regression, GP regression, and generalized ad-
ditive models. Furthermore, it is straightforward to test this assumption in our frame-
work: if we assume that X = f(Z) + ε we can check this assumption by using GP
regression to regress X on Z to estimate ε̂. Then we use HSIC to check whether ε̂ ⊥⊥ Z.

As discussed in Section 4.3, an application of our method to synthetic data is illus-
trated in Figure 5 in the case where Z represents time.

THEOREM 4.1. Given structural assumptions of faithfulness and the Markov as-
sumptions, and assuming that we have consistent regressors with an additive noise
model, whenever Z is a cause of X or Y , it follows that

X ⊥⊥ Y |Z if and only if X −E[X|Z] ⊥⊥ Y −E[Y |Z].

PROOF. We consider three cases for the structure of the causal graph G correspond-
ing to the joint distribution of X, Y , and Z below. For each, we prove both the forward
and reverse directions of the theorem. The associated graphical models are given in
Figure 4. Our three cases are exhaustive due to symmetry (i.e. given three variables,
we might need to switch the variables called X and Y ) and the fact that they cover all
possible dependencies in a DAG between X and (Y, Z), and all possible dependencies
between Z and Y .

Case 1. Assume that we have a graph G with V-structure as in Figure 4

X → Z ← Y.
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This immediately implies X 6⊥⊥Y |Z, so we do not need to prove anything for the forward
direction. We prove the reverse direction by contradiction. Thus we assume

X −E[X|Z] ⊥⊥ Y −E[Y |Z] but X 6⊥⊥ Y |Z.

and specifically this is because we have the V-structure X → Z ← Y . Adding a new
set of variables A := X − E[X|Z] with parents X and Z and B := Y − E[Y |Z] with
parents Y and Z to the DAG, as shown in Figure 4 does not change the model since
these random variables are entirely determined by (X,Z) and (Y, Z) respectively. Now
we see that the path A← Z → B d-connects A and B. By the faithfulness assumption
it follows that A 6⊥⊥B, which is a contradiction.

Case 2. If there is no edge between Z and X or between Z and Y or both, the test
reduces to that of testing unconditional independence between X and Y . Without loss
of generality let us assume there is no edge betweenX and Z. E[X|Z] is a constant, call
it c, so X −E[X|Z] = X − c. As before, add the auxiliary variable B := Y −E[Y |Z] with
parents Y and Z to the DAG as in the Figure 4, Case 2. Then we are testing whether
X − c ⊥⊥ B. Since c is constant, this holds if and only if X ⊥⊥ B. Finally, X ⊥⊥ B if and
only if X ⊥⊥ Y : if X and Y are d-connected by a path p, then we can add the edge from
Y to B to the path p to make X and B d-connected. If instead X and Y are d-separated,
then so are X and B because any path from X to B must go through Y .

Case 3. Z is a cause of X or Y or both, so assume without loss of generality that Z
is a cause of X. Then by assumption we can write X = f(Z) + ε with Z ⊥⊥ ε where
ε = X − E[X|Z] and check ε ⊥⊥ Y − E[Y |Z]. Once again, we add a variable B :=
Y − E[Y |Z] with parents Y and Z to the DAG as shown in Figure 4, Case 3. Now we
prove X ⊥⊥ Y |Z ⇐⇒ ε ⊥⊥ B by considering two subcases.

Subcase 1. If there is an edge in either direction between ε and Y in Figure 4, Case
3 then X and Y are d-connected by the path X ← ε−Y and ε and B are d-connected by
the path ε − Y → B, so we conclude X 6⊥⊥Y |Z and ε 6⊥⊥B by faithfulness. Thus we have
proved the forward and reverse directions for this subcase.

Subcase 2. If there is no edge between ε and Y in Figure 4, then ε and B are d-
separated, since X is a collider in the path ε → X ← Z → B, which is thus blocked.
Moreover X and Y are d-separated given Z, since Z blocks the path X ← Z − Y . By
the Markov assumption, this implies X ⊥⊥ Y |Z and ε ⊥⊥ B. This proves the forward
and reverse directions for this subcase.

4.2. Testing Conditional Independence with Gaussian Process Regression and HSIC
Based on the above general framework, we propose the use of Gaussian Process (GP)
regression, which is almost surely consistent assuming Gaussian errors [Choi and
Schervish 2007], and the Hilbert-Schmidt Independence Criterion (HSIC) for testing
for independence2. Neither of these choices is crucial—we picked GP regression be-
cause of its long history in spatial statistics and widespread use as a convenient non-
parametric regression method. We picked HSIC because it is equal to 0 if and only if
the distributions under consideration are independent, whenever the kernel is char-
acteristic. But in cases where domain knowledge could be used to guide the choice
of independence test or pre-whitening method, these will of course be preferable to
generic choices.

2Since GP regression is a.s. consistent, it is possible that our estimated residuals will not converge to their
true values on a set of measure 0, but in the worst case all that this could do is bias our estimate of HSIC
on a set of measure 0, so the standard estimate of HSIC will still be consistent.
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In the following we assume without loss of generality that X (and Y ) is embedded in
a vector space. That is, we assume that regression on X is well defined. Hence, given
observations (X,Y, Z) = {xi, yi, zi}we use GP regression to fit the modelsX = f(Z)+ε1
and Y = g(Z) + ε2. This requires specifying (possibly different) covariance functions
over Z. If k(z, z′) is a covariance function (Mercer kernel) over Z then we could sample
directly from the GP prior, where we follow general practice and set the mean to 0:

f ∼ GP(0, k)

LetK be the Gram matrix whereKij = k(zi, zj). Conditional on the observations (X,Z)
our data follows a multivariate Gaussian distribution. For a new location

x∗|X,Z, z∗ ∼ N (K∗(K + σ2I)−1X,K∗∗ −K∗(K + σ2I)−1(K∗)
T )

where K∗ = [k(z∗, z1), . . . , k(z∗, zn)] and the σ2 term is added because we assume that
our observations are noisy, as discussed above.

We are not actually interested in observations at new locations, but in making point
predictions at the existing locations. In other words we use the Gaussian Process as
a smoother. Hence we replace K∗ by K and find a vector of mean predictions: X̂ =
K(K + σ2I)−1X. The residuals are:

εxz = X − X̂ = X −K(K + σ2I)−1X = (I + σ−2K)−1X (6)

Using a possibly different kernel, say l with kernel matrix L, we obtain residuals from
smoothing Y via εyz = Y − Ŷ = (I + σ−2L)−1Y in exactly the same way.

Now, as proved above, εxz ⊥⊥ εyz if and only if X ⊥⊥ Y |Z. To test the hypothesis
εxz ⊥⊥ εyz we use HSIC, which requires specifying kernels on the residuals, say p̃ and q̃
on εxz and εyz respectively. This leads to the kernel matrices P and Q. The associated
HSIC test statistic is 1

n2 tr(PHQH) for the centering matrix H = I − 1
n11T .

4.3. Pre-whitening with Gaussian Processes
Given observations (X,S) = {xi, si} where si is a location in space or time, we use
GP regression to fit the model X = f(S) + ε as in the previous section, and obtain
residuals εxs = X −E[X|S]. Notice that because we are using GP regression, all of our
observations (x1, s1) . . . , (xn, sn) are used to estimate E[X|S] and we explicitly account
for the non-iid nature of our spatial or temporal observations. An intuitive way to
think about this is as smoothing. All of the observations play a role in our posterior
prediction E[x∗|S = s∗] at location s∗ as seen in the algebra: our posterior prediction
at location s∗ is given by E[x∗|S = s∗] = K∗(K + σ2I)−1X.

Because we consider S to be an environmental variable, we make the same assump-
tions as above, of independent, additive noise. In other words, if S is a cause of X,
we assume X = f(S) + εxs with S ⊥⊥ εxs. Similarly, if S is a cause of Y , we assume
Y = f(S) + εys with S ⊥⊥ εys. Notice that we are not restricting ourselves to determin-
istic functions f . Any time series model, such as an autoregressive time series, with
additive errors fits these requirements. Thus we can use εxs and εys in subsequent
independence tests, continuing to assume independent, additive noise for causes, and
Markov and faithfulness, without worrying about bias due to an underlying correlation
structure.

This pre-whitening process, which follows standard practice in the spatial statistics
and time series literature, is illustrated in Figure 5 using the same setup described
in the Introduction, where X and Y are independent AR(1) time series. We choose a
particular realization with a large (but spurious) correlation of 0.61 between X and Y
and a correspondingly highly significant value from HSIC (p ≤ 7.7×10−18) for rejecting
the null hypothesis of independence. We apply GP regression to X and Y separately as
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shown in Figure 5 to estimate pre-whitened residuals εX and εY . These residuals have
a very low correlation of 0.01 and a correspondingly insignificant p-value from HSIC of
0.403.

In the case of the PC algorithm, an alternative approach would be to always include
S in the conditioning set when testing for conditional independence. With enough data,
this should be equivalent to the two-stage process we proposed. But because we believe
that there is the potential for an important autocorrelation structure which we need
to worry about, we think it is better to explicitly adjust for it in every variable first.
This approach saves on computational time and modeling complexity: for moderately
sized datasets, we can use a fully Bayesian analysis and carefully inspect the results
of our pre-whitening step for each variable. By contrast, the PC algorithm could entail
many conditional independence tests, so we need these to be automatic and relatively
fast. Many conditional independence tests also rely on categorical conditioning sets,
which are often obtained by first discretizing; this approach will be very difficult since
observations are usually not repeated in space or time.

Finally, for the two-variable causal orientation task, e.g. as addressed by the RE-
SIT framework, space or time would need to be included as part of the regression and
again as part of the independence test, turning what was a simple univariate regres-
sion followed by unconditional independence test into two more complicated steps, a
multivariate regression followed by conditional independence test.

4.4. Gaussian Processes for Structured Data
Since Gaussian Processes depend on defining a kernel between observations, they can
be used for highly structured data such as images and text. Given domains X ,Y we can
define a joint GP over both domains, that is, using a kernel k : (X × Y)× (X × Y)→ R
such that random variables f , indexed by (x, y) ∈ X ×Y are drawn from a multivariate
Gaussian distribution with covariance matrix given by k, as evaluated on the index set
and with mean function µ : (X × Y)→ R as evaluated on the index set.

A special but particularly interesting case arises whenever the kernel function k is
given by a product over kernels on X and Y respectively, i.e. whenever

k((x, y), (x′, y′)) = kx(x, x′)ky(y, y′).

Such a situation occurs, e.g. in multivariate GP regression where Y = {1, . . . , d}, i.e.
where Y denotes the coordinate index of the regression problem and where ky denotes
the correlation between the coordinate-wise regressions. Likewise, when Y is the do-
main of images or documents, we therefore end up modeling the similarity between
structured objects in Y using their covariates in X .

We now exploit the duality discussed by [Williams 1998] between feature space
representations and GPs to introduce estimates of feature functions on Y. That is,
we will adhere to the GP treatment for the covariate-dependent part of the ker-
nel via kx(x, x′) and use a feature space representation for the label-dependent part

3We note that the correct choice of kernel and method for obtaining residuals matters. We used a Gaussian
RBF kernel and obtained residuals by smoothing. If we had been more concerned with trying to exactly
mimic the behavior of a classical autoregressive fit, we would instead need to use the Ornstein-Uhlenbeck
process, which is a GP with exponential kernel given by k(t, t′) = 1

1−φ2 exp(log(φ)|t − t′|) where φ =

0.9 for x and φ = 0.8 for y, and we would also have performed one-step-ahead forecasting rather than
smoothing in order to obtain the residuals. Ultimately, if the practitioner has domain knowledge supporting
the use of a particular class of models, such as AR(1), we would absolutely recommend incorporating this
knowledge, rather than relying on a generic choice like GP regression with a Gaussian RBF kernel. We
advocate GP regression as a generally applicable method, especially in cases for which there is little domain
expertise, and we further advocate carefully checking residuals for structure and refining one’s modeling
choices accordingly.
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Fig. 5. X is a realization of an AR(1) process with xt = 0.9 · xt−1 + εx,t and Y is a realization of an AR(1)
process with yt = 0.8 ·yt−1+ εy,t. X and Y are independent and εx,t, εy,t ∼ N (0, 1). As shown in Figure 1 it
is likely that there will be a spurious correlation between X and Y . We chose a specific realization, plotted
as the black dots in the top left plot (for visual clarity, X + 2 and Y − 2 are shown), in which the correlation
is 0.61 with highly significant p-value from HSIC ≤ 7.7×10−18 (top right plot). We used GP regression with
an RBF covariance function to obtain the fitted curves shown in red and blue in the top left. The residuals
are shown in the bottom left and compared in the bottom right: the correlation between the residuals is 0.01
with insignificant p-value from HSIC = 0.40.

l(y, y′) = 〈ψ(y), ψ(y′)〉. The main motivation is that this will allow us to reason about
feature space embeddings of distributions and of conditional probability distributions
efficiently.

Before we do so, recall scalar GP regression as introduced in Section 3.1. There one
assumes that the random variable f , as indexed by x ∈ X follows a normal distribution
with covariance function k and mean function µ. The idea is to extend the predictive
distribution Y ∗|Y,X,X∗, as captured by Equation 5. We now extend this to vector val-
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ued functions and subsequently to general index sets. In the standard treatment, we
assume that:

f(X), f(X∗)|X,x∗ ∼ N (0,K)

where Kij = k(xi, xj) + δijσ
2. So conditioning we find:

f(X∗)|Y,X, x∗ = N (K(x∗, X)(K + σ2I)−1y,K(x∗, x∗)−K(x∗, x)(K + σ2I)−1K(x, x∗))

What if f(X) isn’t in R, such as Y ∈ Rd or whenever Y is a string or an image? We
begin with Y = {1, . . . , d}, thus we could view the scalar case as Y = {1} and therefore
with estimates in RY = R1. In general, the challenge is to deal with possible nor-
malization problems of distributions over infinite-dimensional objects. The trick is to
consider evaluating the GP on Y only on relevant points y ∈ Y rather than considering
a possibly infinite dimensional set of evaluations.

For computational convenience of derivation we adopt the argument of [Williams
1998], i.e. that f(y) = 〈v, ψ(y)〉 is a linear function in the space of the features ψ(y),
where v ∼ N (0,1) and therefore f ∼ GP(0, l). It is understood that the kernel satisfies
l(y, y′) = 〈ψ(y), ψ(y′)〉. This is entirely consistent whenever ψ is finite-dimensional. For
the purpose of evaluation on a finite number of terms, we can always assume that ψ
denotes the Cholesky factors of the covariance matrix L.

We now assume that we are given features ψ(y1), . . . ψ(yn), which are drawn from a
Gaussian process with kernel k and mean 0. That is, we assume that this holds for any
one-dimensional projection of ψ(y) onto a unit-vector. Using Equation (5) we have that

ψ(Y ∗)|Y ∼ N (µ̄, K̄) (7)
where µ̄ = K(X∗, X)(K(X,X) + σ2I)−1ψ(Y )

K̄ = K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2I)−1K(X,X∗)

In it we used the shorthand ψ(Y ) = (ψ(y1), . . . ψ(yn)) and analogously ψ(Y ∗) =
(ψ(y∗1), . . . , ψ(y∗n∗)), whenever Y ∗ is a set. For instance, whenever Y = {1, . . . d} and
ψ(y) = ey, this simply decomposes into d decoupled Gaussian Processes. More gener-
ally, we can evaluate by taking inner products with test functions ψ(y). At this point
the evaluation reduces to kernel computations l(y, y′).

As before, we employ the GP not for prediction but for smoothing only, i.e. we are
mostly interested in the residuals ψ̂i−ψ(yi) at locations xi rather than the predictions
ψ̂i themselves. Since we will ultimately use HSIC, we do not need to explicitly compute
the residuals; rather we need to compute the Gram matrix R of the residuals with

Rij = Eψ̂

[〈
ψ̂i − ψ(yi), ψ̂j − ψ(yj)

〉]
(8)

= Cov
ψ̂

[〈
ψ̂i, ψ̂j

〉]
+
〈
Eψ̂

[
ψ̂i

]
+ ψ(yi),Eψ̂

[
ψ̂j

]
− ψ(yj)

〉
The second line follows from the fact that Cov(A,B) = E[AB]−E[A][B]. To evaluate this
expression we use the fact that the covariance is given in Equation (7). Its contribution
to the entire matrix R is

K −K(K + σ2I)−1K = K(I + σ−2K)−1. (9)

where we used the Woodbury matrix identity4. Next we use the fact that

Eψ̂

[(
ψ̂1, . . . ψ̂n

)]
− ψ(Y ) = K(K + σ

2

I)−1ψ(Y )− ψ(Y ) = −(I + σ−2K)−1ψ(Y ) (10)

4(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1
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Again using the Woodbury matrix identity. Taking inner products and plugging this
back into Equation (8) we obtain

R = K(I + σ−2K)−1 + (I + σ−2K)−1L(I + σ−2K)−1 (11)

Note that R decomposes into two parts: first the contribution of the residuals due to
smoothing inK. This converges to σ2I for small σ2, i.e. whenever we assume that there
is little additive noise associated with y|x the contribution to the residuals matrix is
very small off-diagonal and equal to σ2 on the diagonal. Secondly, we have an appro-
priately smoothed term between K and L. Again, this vanishes for small additive noise
but it also vanishes whenever K and L are coherent.

Once we have access to R, we can use HSIC to test independence: ĤSIC(R,X) =
1
n2 trRHKH. If we choose characteristic kernels for K (possibly a different K relative
to the one used in the GP regression) and L then we do not need to consider doing
either a further embedding of the residuals, or solving the pre-image problem and
applying a different embedding. The reason is that what we care about testing is the
independence between the residuals and X. Although we do not have access to the
residuals, calculating HSIC only requires access to the Gram matrices corresponding
to the feature space representation of the residuals and X. This is exactly what we
have in the form of R and K respectively.

5. EXPERIMENTS
5.1. Spatial data
The Boston Housing dataset, originally investigated in [Harrison Jr and Rubinfeld
1978] has been widely used in statistics and machine learning. In the original paper,
data was collected in 1970 and used in an analysis of the willingness of Boston area
residents to pay for better air quality, based on an economic model and regression
analysis. As discussed in [Pace and Gilley 1997], it is usually analyzed without taking
into consideration the fact that the data are spatially observed.

There is significant spatial clustering in every single variable in the dataset, as re-
vealed by Moran’s I test (using a similarity matrix calculated as the reciprocals of the
spatial distances between observations, p-values for each variable were significant,
thus rejecting the null hypothesis of no spatial clustering) and confirmed by HSIC,
which was used to test for independence between the locations in space (using an RBF
kernel) and each variable separately. In addition to adding spatial coordinates to each
observation, [Pace and Gilley 1997] also corrected a few errors in the original dataset.

The variables in the dataset are crime rate (crim), proportion of residential land
zoned for lots over 25,000 sq. ft (zn), proportion of non-retail business acres per town
(indus), indicator variable for whether tract bounds the Charles River (chas), nitric
oxides concentration (nox), average number of rooms per dwelling (rm), proportion of
owner-occupied units built prior to 1940 (age), weighted average of distances to five
Boston employment centers (dis), index of accessibility to radial highways (rad), full-
value property-tax rate (tax), pupil-teacher ratio by town (ptratio), polynomial trans-
formation of proportion of blacks by town (b), percentage of lower status people in the
population (lstat), and median value of owner-occupied homes (medv). The usual task
with this dataset is to predict the median value of owner-occupied homes.

In the original analysis [Harrison Jr and Rubinfeld 1978], the authors carefully state
their prior, theoretical beliefs about the statistical (but not necessarily causal) relation-
ship between each of the predictors in the dataset and the dependent variable. They
included two “structural” variables which they expect to be related to home value,
number of rooms and proportion of owner units built prior to 1940, eight neighborhood
variables, two accessibility (in terms of transportation) variables, and two air pollution
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Fig. 6. Boston Housing data. Left: the PC algorithm was run on the data without pre-whitening (the data
exhibits spatial autocorrelation), using GP/HSIC for conditional independence tests. The outcome variable
of interest, median house value (medv) is caused by the number of rooms (rm) and the parent teacher
ratio (ptratio), and it is a cause of the percentage of lower status people in the population (lstat). Other
edge orientations seem dubious: nitric oxide concentration (nox), a measure of pollution causes industrial
business activitity (indus), residential land zoned for large lots (zn), distance to employment centers (dis),
and crime (crim). The substantive question in the original paper [Harrison Jr and Rubinfeld 1978] was about
the effect of pollution (nox) on house value (medv), but in the graph shown, there is no direct causal effect
of pollution on house value. Right: after pre-whitening the data to remove spatial autocorrelation, the PC
algorithm was run on it. The resulting causal graph has many fewer edges than the graph on the left. The
outcome variable of interest, median house value (medv) is caused by percentange of lower status people
in the population (lstat), number of rooms (rm), whether the tract bounds the Charles River (chas), and
nitric oxide concentration (nox), a measure of pollution and the predictor variable of interest in the original
paper [Harrison Jr and Rubinfeld 1978]. The graph shows that nitric oxide concentration (nox) is caused by
industrial business activity (indus) (the opposite was found in the graph on the left), which is reasonable,
but also by crime (crim) which seems unlikely.

variables. [Zhang et al. 2011] demonstrated KCI with the PC algorithm on this data.
For the variable of interest, median value of house (medv), they found that number of
rooms (rm), percentage of lower status people in the population (lstat), proportion of
owner-occupied units built prior to 1940 (age), and crime rate (crim) are all parents of
house value, with directed edges implying that these variables all cause house value.

We used the corrected dataset given in [Pace and Gilley 1997]. We ran the PC al-
gorithm as implemented in the R package pcalg [Kalisch et al. 2012] using our new
GP/HSIC approach for conditional independence with α = 0.001. The results are shown
in Figure 6. Throughout, we use the Gamma approximation to calculate p-values from
HSIC. In this case, the outcome variable of interest, median house value, is caused by
the number of rooms and parent teacher ratio and it is a cause of the percentage of
lower status people in the population. There is no direct causal effect of pollution on
house value.

Next, we pre-whitened each variable using the spatial coordinates with a GP regres-
sion in which the hyperparameters of the squared exponential (RBF) covariance func-
tion are learned by maximizing the marginali likelihood using gradient descent (the
default in GPStuff [Vanhatalo et al. 2013]). Using this new dataset, we ran the PC al-
gorithm again with α = 0.001, as shown in Figure 6 (right). The resulting causal graph
has many fewer edges. The percentage of lower status people in the population and
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number of rooms cause house value, as in [Zhang et al. 2011]. In addition, an indicator
variable for whether the house is near the Charles River (which was not considered
in [Zhang et al. 2011]) also causes house value. Unlike the original graph in Figure 6
(left), we find that nitric oxide concentration, an indicator of air pollution, is a direct
cause of house value, which addresses the original hypothesis explored by the authors
in [Harrison Jr and Rubinfeld 1978]. Furthermore, nitric oxide concentration is now
found to be caused by industrial business activity, rather than the converse when using
unwhitened data. But we see that nitric oxide concentration is also apparently caused
by crime, which seems unlikely.

5.2. Time series data

Ozone

Temp InvHt

Pres

Vis

Hgt

Hum

InvTmp

Wind

Ozone

TempInvHt

Pres

Vis Hgt

Hum InvTmp

Wind

Fig. 7. Left: We used the PC algorithm with a dataset of environmental observations related to ozone in
Upland, CA without first pre-whitening the time series data. The inferred causal CPDAG says that the
temperature at the temperature inversion in the atmosphere (InvTmp) directly causes ozone, which causes
visibility (Vis). Right: We pre-whitened the data using GP regression. Then we used the PC algorithm with
the same dataset as previously. Ozone is still a cause of visibility (Vis), but no variables in the dataset were
found to be a cause of ozone.

We consider the ozone dataset used in [Breiman and Friedman 1985]. This daily data
clearly exhibits temporal autocorrelation, with 330 observations made over the course
of 358 days. In Figure 7 (left) we show the results of the PC algorithm run on the data
as is, with conditional independence tests using GP regression for conditioning and
HSIC for independence testing. We set α = .05 and used the standard version of the PC
algorithm implemented in [Kalisch et al. 2012]. We used the Gamma approximation to
calculate p-values for HSIC.

The ozone variable is directly caused by the temperature at the temperature inver-
sion in the atmosphere (InvTmp) and is a cause of visibility. In Figure 7 (right) con-
tains the results of the PC algorithm run on the data after each variable has first been
pre-whitened. To pre-whiten, we used GP regression with an exponential covariance
function for time (which is analogous to an autoregressive fit), learning the hyperpa-
rameters from the data by maximizing the marginal likelihood with gradient descent.
Now we see that the ozone variable has no parents, and is still a cause of visibility.
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Wind is no longer connected to any nodes, and two edges that were directed are no
longer directed.
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Fig. 8. Ozone and temperature data from Switzerland. A partial autocorrelation plot reveals significant
temporal autocorrelation in both the ozone and temperature data. Before pre-whitening, bivariate causal
orientation suggests incorrectly that ozone causes temperature. After pre-whitening, bivariate causal orien-
tation correctly concludes that temperature causes ozone.

Next, we turn to the causal orientation (RESIT) framework for edge orientation, and
consider one of the pairs of data5 that our replication of [Peters et al. 2013] showed was
misoriented using the same method considered in that paper, Gaussian Process regres-
sion followed by HSIC, comparing a forward and backward model. Pair 51 consists of
daily ozone and temperature data from Switzerland, where the ground truth is that

5http://webdav.tuebingen.mpg.de/cause-effect
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temperature causes ozone. As shown in Figure 8, there is an underlying time trend,
and a partial autocorrelation plot reveals temporal autocorrelation. Considering the
data as is, the p-value of the forward model (“ozone causes temperature”) is 0.002 and
the p-value of the backwards model (“temperature causes ozone”) is 4 × 10−7. Thus,
the causal orientation method fails, incorrectly predicting the forward model because
it fits better. After pre-whitening, the p-values change. The forward model is still 0.002
but the backwards model is 0.34. The backwards model thus fits better and the edge is
correctly oriented.

5.3. Textual Data
We consider a novel causal orientation problem: given pairs of translated sentences in
two languages X and Y , determine whether X “causes” Y (meaning that the sentence
in language Y was translated from the sentence in language X) or vice versa. We use
the OpenOffice documentation corpus [Tiedemann 2009] which consists of sentence-
aligned documentation in English, French, Spanish, Swedish, German, and Japanese.
We use our Gaussian Process formulation for structured data to calculate residuals,
and then we test whether these residuals are independent of the predictor, as in the
RESIT framework. We use a spectrum kernel (also called a string kernel, the default
in [Karatzoglou et al. 2004]) which matches substrings of length m = 3.

The corpus is relatively large with 30,000-40,000 observations, so we use a bootstrap
approach: for a pair of languages X, Y , we take a small sample (n = 400) and calculate
a Gram matrix for the residuals R for the forward model X causes Y for half the
sample (n = 200). Then we use HSIC to test whether R is independent of X on the
other half of the sample (n = 200). We do the same for the reverse direction. We repeat
this process 500 times with different subsets of the data, and report the fraction of
times that we predict the forward direction based on comparing the p-values of the
forward and reverse directions. (Larger p-values indicate better fits, so we accept the
direction with the larger p-value.)

The results are in Figure 9. The OpenOffice documentation was originally written in
German for its predecessor, StarOffice. When it was purchased by Sun Microsystems,
the documentation was translated into English. Subsequently, translations were made
from English to other languages, and new additions to the documentation were made
in English6. Thus we consider English to be the “cause” of every other language except
German. The algorithm correctly orients forward edges from English to every other
language except German. The algorithm also orients forward edges from German to
every language, which makes sense since German is a cause (though not direct) of
every other language.

6. CONCLUSION
We proposed a simple, unified framework for coherently addressing the problem of
algorithmic causal inference with non-iid observations, e.g., when data points are dis-
tributed in space and time, and demonstrated its use on two real datasets. When us-
ing the PC algorithm or any other method based on independence tests, non-iid data
presents a problem, and we showed how a pre-whitening step, using Gaussian Process
regression, can address this problem. We further showed how this same idea, of obtain-
ing residuals from a GP regression, can be used to turn an unconditional independence
test like HSIC into a conditional independence test.

We also showed that highly structured data, like text, can be considered in a causal
framework, again using GP regression. In this case, we presented a novel formulation
of a GP for structured inputs and outputs. The key derivation was that of the Gram

6Uwe Fischer, personal communication, 9 July 2014.
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Fig. 9. Causal orientation with text: given pairs of sentences in two languages, the task is to determine
which language is a translation of the other. We used a bootstrapping approach to repeatedly apply a causal
orientation algorithm based on Gaussian Processes for structured data and HSIC for independence testing
to determine which language “causes” the other language. Shown are the fraction of times that the algo-
rithm selected the forward causal direction, along with 95% confidence intervals. The top line, for example,
means that in comparing German and Spanish, the algorithm concluded that German caused Spanish 77%
of the time. The sentences come from OpenOffice documentation, portions of which were originally written
in German and translated into English. After this one time translation, which occurred when Sun Microsys-
tems bought what was then StarOffice, new documentation was written in English and English became the
source language for translations into Spanish, Swedish, French, Japanese, and back into German. The al-
gorithm thus correctly orients edges such that German and English are the cause of every other language.
The algorithm definitively concludes that German causes English.

matrix of the residuals, because once this is calculated, we can use HSIC to test inde-
pendence.

HSIC is but one of the many measures of statistical independence which have been
proposed. It might be fruitful to consider other measures instead, such as mutual in-
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formation or distance correlation [Székely et al. 2009] or to determine whether the
consistency results in [Kpotufe et al. 2014] hold for our method. We do believe that
Gaussian Process regression is the most flexible and general tool for the purposes of
pre-whitening non-iid data, due to its long-standing use in the spatial statistics and
time series literature. In future work, we intend to look more deeply at the connections
between GP regression and kernel-based measures of independence.
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Inference Using Graphical Models with the R Package pcalg. Journal of Statistical Software 47, 11
(2012), 1–26. http://www.jstatsoft.org/v47/i11/

Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. 2004. kernlab – An S4 Package for
Kernel Methods in R. Journal of Statistical Software 11, 9 (2004), 1–20. http://www.jstatsoft.org/v11/i09/

Samory Kpotufe, Eleni Sgouritsa, Dominik Janzing, and Bernhard Schölkopf. 2014. Consistency of Causal
Inference under the Additive Noise Model. (2014).

ACM Transactions on Intelligent Systems and Technology, Vol. 99, No. 999, Article 9999, Publication date: January 2100.

http://papers.nips.cc/paper/5079-statistical-analysis-of-coupled-time-series-with-kernel-cross-spectral-density-operators.pdf
http://papers.nips.cc/paper/5079-statistical-analysis-of-coupled-time-series-with-kernel-cross-spectral-density-operators.pdf
http://dx.doi.org/10.1002/9781118619193.ch1
http://arxiv.org/abs/1402.4501
http://arxiv.org/abs/1402.4501
http://books.nips.cc/papers/files/nips20/NIPS2007_0730.pdf
http://CRAN.R-project.org/package=gptk
http://www.jstatsoft.org/v47/i11/
http://www.jstatsoft.org/v11/i09/


Gaussian Processes for Independence Tests with non-iid Data in Causal Inference 9999:23

Alessio Moneta, Nadine Chlaß, Doris Entner, and Patrik O Hoyer. 2011. Causal Search in Structural Vector
Autoregressive Models. Journal of Machine Learning Research-Proceedings Track 12 (2011), 95–114.

Patrick AP Moran. 1950. Notes on continuous stochastic phenomena. Biometrika (1950), 17–23.
R Kelley Pace and Otis W Gilley. 1997. Using the spatial configuration of the data to improve estimation.

The Journal of Real Estate Finance and Economics 14, 3 (1997), 333–340.
Judea Pearl. 2009. Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press, New

York, NY, USA.
K. Pearson. 1983. Handbook of Applied Mathematics. Van Nostrand Reinhold Company, New York.
Jonas Peters, Joris Mooij, Dominik Janzing, and Bernhard Schölkopf. 2013. Causal Discovery with Contin-

uous Additive Noise Models. arXiv preprint arXiv:1309.6779v4 (2013).
J. D. Ramsey. 2014. A Scalable Conditional Independence Test for Nonlinear, Non-Gaussian Data. ArXiv

e-prints (Jan. 2014).
Carl Edward Rasmussen and Hannes Nickisch. 2010. Gaussian processes for machine learning (GPML)

toolbox. The Journal of Machine Learning Research 11 (2010), 3011–3015.
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